Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
BMC Pediatr ; 24(1): 305, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704545

ABSTRACT

INTRODUCTION: Congenital chloride diarrhoea (CCD) is an autosomal recessive condition that causes secretory diarrhoea and potentially deadly electrolyte imbalances in infants because of solute carrier family 26 member 3 (SLC26A3) gene mutations. CASE PRESENTATION: A 7-month-old Chinese infant with a history of maternal polyhydramnios presented with frequent watery diarrhoea, severe dehydration, hypokalaemia, hyponatraemia, failure to thrive, metabolic alkalosis, hyperreninaemia, and hyperaldosteronaemia. Genetic testing revealed a compound heterozygous SLC26A3 gene mutation in this patient (c.269_270dup and c.2006 C > A). Therapy was administered in the form of oral sodium and potassium chloride supplements, which decreased stool frequency. CONCLUSIONS: CCD should be considered when an infant presents with prolonged diarrhoea during infancy, particularly in the context of maternal polyhydramnios and dilated foetal bowel loops.


Subject(s)
Diarrhea , Diarrhea/congenital , Metabolism, Inborn Errors , Mutation , Sulfate Transporters , Humans , Sulfate Transporters/genetics , Diarrhea/genetics , Infant , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/diagnosis , Chloride-Bicarbonate Antiporters/genetics , Female , Heterozygote , Male , Polyhydramnios/genetics , Potassium Chloride/therapeutic use , Potassium Chloride/administration & dosage , East Asian People
2.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Humans , Male , Child , Chloride Channels/genetics , Retrospective Studies , Child, Preschool , China/epidemiology , Dent Disease/genetics , Dent Disease/diagnosis , Phosphoric Monoester Hydrolases/genetics , Mutation , Proteinuria/genetics , Adolescent , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Infant , Genetic Testing , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Mutation, Missense , Female , Glomerulosclerosis, Focal Segmental/genetics , Kidney/pathology , East Asian People
3.
BMC Pediatr ; 24(1): 253, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622515

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) and Wilson's disease (WD) are both systemic diseases that can affect multiple organs in the body. The coexistence of SLE and WD is rarely encountered in clinical practice, making it challenging to diagnose. CASE REPORT: We present the case of a 9-year-old girl who initially presented with proteinuria, haematuria, pancytopenia, hypocomplementemia, and positivity for multiple autoantibodies. She was diagnosed with SLE, and her blood biochemistry showed elevated liver enzymes at the time of diagnosis. Despite effective control of her symptoms, her liver enzymes remained elevated during regular follow-up. Laboratory tests revealed decreased serum copper and ceruloplasmin levels, along with elevated urinary copper. Liver biopsy revealed chronic active hepatitis, moderate inflammation, moderate-severe fibrosis, and a trend towards local cirrhosis. Genetic sequencing revealed compound heterozygous mutations in the ATP7B gene, confirming the diagnosis of SLE with WD. The girl received treatment with a high-zinc/low-copper diet, but her liver function did not improve. Upon recommendation following multidisciplinary consultation, she underwent liver transplantation. Unfortunately, she passed away on the fourth day after the surgery. CONCLUSIONS: SLE and WD are diseases that involve multiple systems and organs in the body, and SLE complicated with WD is rarely encountered in the clinic; therefore, it is easy to misdiagnose. Because penicillamine can induce lupus, it is not recommended. Liver transplantation is indicated for patients with liver disease who do not respond to medical treatment with WD. However, further research is needed to determine the optimal timing of liver transplantation for patients with SLE complicated with WD.


Subject(s)
Hepatolenticular Degeneration , Lupus Erythematosus, Systemic , Child , Female , Humans , Ceruloplasmin/metabolism , Ceruloplasmin/therapeutic use , Copper/urine , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/drug therapy , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Penicillamine/therapeutic use
4.
Physiol Rep ; 11(23): e15879, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030388

ABSTRACT

In this study, we investigated the nephroprotective effects of Umbelliferone (UMB) against cisplatin-induced acute kidney injury (AKI). C57BL/6J mice were treated with cisplatin via a single intraperitoneal injection (25 mg/kg) with or without UMB (40 mg/kg/day) by gavage. Renal function, apoptosis, oxidative stress, inflammation, and mitochondrial function were analyzed to evaluate kidney injury. In vitro, human proximal tubule epithelial cells were treated with cisplatin, with or without UMB, for 24 h. Western blotting and immunohistochemistry were performed to explore the mechanisms underlying the nephroprotective effects of UMB. Cisplatin-induced renal dysfunction, including increases in blood urea nitrogen, serum creatinine, and renal tubular injury indices (NGAL and KIM-1), were significantly attenuated by UMB treatment, along with renal phenotypic changes and renal tubular injury, as evidenced by improved renal histology. Moreover, NRF2 was activated by UMB pretreatment, along with the inhibition of oxidative stress and inflammatory response, as evidenced by decreased levels of antioxidant genes and inflammatory cytokines in cisplatin-induced AKI. Our results demonstrate that UMB can protect against cisplatin-induced nephrotoxicity, which is mediated by the NRF2 signaling pathway via antioxidant and anti-inflammatory activities, suggesting the clinical potential of UMB for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Animals , Humans , Cisplatin/toxicity , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Kidney/metabolism , Oxidative Stress , Inflammation/metabolism , Apoptosis , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , Umbelliferones/metabolism
5.
BMC Pediatr ; 23(1): 590, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37993833

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a rare genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the "molar tooth sign", and variable organ involvement (such as eye, kidney, liver, and skeleton). Here, we present a case of JS in a Chinese boy. CASE PRESENTATION: An 11-year-old Chinese boy presented with neonatal asphyxiation and hypoxia, strabismus, subsequent developmental delay, ataxia and end-stage kidney disease (ESKD). Routine blood tests showed severe anemia, increasing blood urea nitrogen and creatinine, elevated parathyroid hormone, hypocalcemia, hypokalemia and metabolic acidosis. Urine tests showed mild proteinuria. Ultrasound showed two small kidneys. Brain magnetic resonance imaging (MRI) showed dysplasia of the cerebellar vermis and extension of the upper cerebellar feet with the "molar tooth sign". Genetic analysis showed novel compound heterozygous mutations in the RPGRIP1L gene [p.L447fs*7(p.Leu447fsTer7) and p.G908V (p.Gly908Val)]. CONCLUSION: In the present study, we identified novel compound heterozygous mutations in the RPGRIP1L gene in a Chinese boy. The clinical and genetic findings of this study will expand the understanding of JS.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Child , Humans , Male , Abnormalities, Multiple/genetics , Adaptor Proteins, Signal Transducing/genetics , Cerebellum/diagnostic imaging , Cerebellum/abnormalities , East Asian People , Eye Abnormalities/complications , Eye Abnormalities/genetics , Kidney Diseases, Cystic/complications , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Mutation , Retina/abnormalities
6.
Front Pediatr ; 11: 1084336, 2023.
Article in English | MEDLINE | ID: mdl-36816376

ABSTRACT

Objective: To summarize the clinical features, diagnosis and enzyme replacement therapy(ERT) of Fabry disease (FD) in children. Methods: The clinical data, laboratory tests, genetic variations and treatment of 10 FD children diagnosed in Shandong Provincial Hospital from September 2020 to June 2022 were retrospectively analyzed. Results: Among the 10 cases from 6 families, 7 patients were boys of 4 to 13 years of age, and 3 were girls of 12 to 15 years of age. There were 7 symptomatic patients, including 6 boys and 1 girl. All 7 patients presented with acral neuralgia. Five patients had little or no sweating. Five patients presented with cutaneous angiokeratoma. Two patients had abdominal pain. One patient developed joint symptoms. Four patients had corneal opacity. One patient had hearing loss; one patient had short stature. One patient had mild proteinuria and 1 patient had dysplasia of the right kidney with decreased eGFR (55.28 ml/min.1.73 m2). The left ventricular mass index was slightly elevated in 1 patient. Three patients had mild obstructive ventilatory dysfunction; a small amount of effusion in the intestinal space of the lower abdomen or mild fatty liver was found in 2 patients. Partial empty sella turcica in 1 patient. A total of 6 GLA gene variants were detected in 10 children, among which C.1059_1061delGAT (p.met353del) was a newly discovered mutation. Five children received ERT, of which 4 were treated with agalsidase beta and 1 was treated with agalsidase alpha. Only 1 patient had anaphylaxis. Lyso-GL-3 levels decreased significantly in the first 3 months of ERT initiation and remained relatively stable thereafter in 3 patients. The Lyso-GL-3 level was decreased, but renal impairment continued to progress in 1 patient treated with agalsidase alpha. Conclusion: The clinical manifestations of FD in childhood are diverse, and it is necessary to make a definite diagnosis by combining family history, enzyme activity, biomarkers, gene testing and other indicators. Pedigree screening and high-risk population screening are helpful for early identification, early diagnosis and early treatment. No serious adverse reactions were found during the short-term treatment with agalsidase alpha and beta.

9.
Ren Fail ; 44(1): 1061-1069, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35730179

ABSTRACT

OBJECTIVE: To explore the clinical characteristics, treatment protocol and prognosis of children with anti-complement factor H (CFH) autoantibody (Ab)-associated hemolytic uremic syndrome (HUS). METHODS: Clinical data of 8 patients with anti-CFH Ab-associated HUS who were admitted to Shandong Provincial Hospital from January 2011 to December 2020 were collected retrospectively. RESULTS: The age at disease onset ranged between 5.83 and 13.5 years, with a male: female ratio of 1.67:1. The time of onset was distributed from May to June and November to December. Digestive and upper respiratory tract infections were common prodromal infections. Positivity for anti-CFH Ab and reduced C3 levels were observed among all patients. Heterozygous mutation of the CHFR5 gene (c.669del A) and homozygous loss of the CFHR1 gene [loss2(EXON:2-6)] were found in two patients. All patients received early treatment with plasma exchange and corticosteroid therapy. Six patients were given immunosuppressive agents (cyclophosphamide and/or mycophenolate mofetil) for persistent proteinuria. The follow-up period was 12-114 months. Four of 8 patients achieved complete remission, 3 achieved partial remission, and 1 died. Relapse occurred in two patients. CONCLUSION: Children with anti-CFH Ab-associated HUS were mainly school-aged and predominantly male, with onset times of summer and winter. Digestive and upper respiratory tract infections were common prodromal infections. Plasma exchange combined with methylprednisolone pulse therapy in the acute phase and cyclophosphamide or mycophenolate mofetil treatment for maintenance can be utilized in children with anti-CFH Ab-associated HUS if eculizumab is not available.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Hemolytic-Uremic Syndrome , Respiratory Tract Infections , Adolescent , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/therapy , Autoantibodies , Child , Child, Preschool , Complement Factor H/genetics , Complement Factor H/therapeutic use , Cyclophosphamide/therapeutic use , Female , Hemolytic-Uremic Syndrome/complications , Hemolytic-Uremic Syndrome/diagnosis , Hemolytic-Uremic Syndrome/therapy , Humans , Immunologic Factors/therapeutic use , Male , Mycophenolic Acid/therapeutic use , Respiratory Tract Infections/complications , Respiratory Tract Infections/drug therapy , Retrospective Studies
10.
Biotechnol Biofuels ; 14(1): 54, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653389

ABSTRACT

BACKGROUND: Yellow nutsedge is a unique plant species that can accumulate up to 35% oil of tuber dry weight, perhaps the highest level observed in the tuber tissues of plant kingdom. To gain insight into the molecular mechanism that leads to high oil accumulation in yellow nutsedge, gene expression profiles of oil production pathways involved carbon metabolism, fatty acid synthesis, triacylglycerol synthesis, and triacylglycerol storage during tuber development were compared with purple nutsedge, the closest relative of yellow nutsedge that is poor in oil accumulation. RESULTS: Compared with purple nutsedge, high oil accumulation in yellow nutsedge was associated with significant up-regulation of specific key enzymes of plastidial RubisCO bypass as well as malate and pyruvate metabolism, almost all fatty acid synthesis enzymes, and seed-like oil-body proteins. However, overall transcripts for carbon metabolism toward carbon precursor for fatty acid synthesis were comparable and for triacylglycerol synthesis were similar in both species. Two seed-like master transcription factors ABI3 and WRI1 were found to display similar transcript patterns but were expressed at 6.5- and 14.3-fold higher levels in yellow nutsedge than in purple nutsedge, respectively. A weighted gene co-expression network analysis revealed that ABI3 was in strong transcriptional coordination with WRI1 and other key oil-related genes. CONCLUSIONS: These results implied that pyruvate availability and fatty acid synthesis in plastid, along with triacylglycerol storage in oil bodies, rather than triacylglycerol synthesis in endoplasmic reticulum, are the major factors responsible for high oil production in tuber of yellow nutsedge, and ABI3 most likely plays a critical role in regulating oil accumulation. This study is of significance with regard to understanding the molecular mechanism controlling carbon partitioning toward oil production in oil-rich tuber and provides a valuable reference for enhancing oil accumulation in non-seed tissues of crops through genetic breeding or metabolic engineering.

11.
Plant Cell Physiol ; 61(1): 118-129, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31532486

ABSTRACT

Cyperus esculentus is probably the only plant that is known to accumulate large amounts of oil in its tubers. However, the underlying metabolic mechanism and regulatory factors involved in oil synthesis of tubers are still largely unclear. In this study, one gene encoding type I diacylglycerol acyltransferase (DGAT) (CeDGAT1) and two genes encoding type II DGAT (CeDGAT2a and CeDGAT2b) from C. esculentus were identified and functionally analyzed. All three DGAT genes were found to be expressed in tuber, root and leaf tissues. CeDGAT1 is highly expressed in roots and leaves, whereas CeDGAT2b is dominantly expressed in tubers. Furthermore, the temporal expression pattern of CeDGAT2b is well coordinated with the oil accumulation in developing tubers. When each CeDGAT was heterologously expressed in triacylglycerol (TAG)-deficient mutant of Saccharomyces cerevisiae, Arabidopsis thaliana wild type or its TAG1 mutant with AtDGAT1 disruption, only CeDGAT2b showed the ability to restore TAG biosynthesis with lipid body formation in yeast mutant, enhance seed oil production of Arabidopsis wild type and rescue multiple seed phenotypes of TAG1 mutant. In addition, CeDGAT2b was shown to have a substrate preference for unsaturated fatty acids toward TAG synthesis. Taken together, our results indicated that CeDGAT2b from C. esculentus is an actively functional protein and is most likely the major contributor to tuber oil biosynthesis containing common fatty acids, in contrast to oil-rich seeds and fruits where DGAT1 plays a more central role than DGAT2 in oil production accumulating normal fatty acids, whereas DGAT2 is a primary regulator for oil synthesis rich in unusual fatty acids.


Subject(s)
Cyperus/genetics , Diacylglycerol O-Acyltransferase/genetics , Genes, Plant , Plant Oils/metabolism , Plant Tubers/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , Cyperus/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/analysis , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Germination , Molecular Structure , Plant Leaves/metabolism , RNA, Plant/genetics , RNA, Plant/isolation & purification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Seeds/genetics , Seeds/metabolism , Triglycerides/metabolism
12.
BMC Plant Biol ; 18(1): 151, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30041609

ABSTRACT

BACKGROUND: Cyperus esculentus is unique in that it can accumulate significant amounts of oil, starch and sugar as major storage reserves in tubers with high tuber yield and therefore considered as a novel model to study carbon allocation into different storage reserves in underground sink tissues such as tubers and roots. Sucrose (Suc) plays a central role in control of carbon flux toward biosynthesis of different storage reserves; however, it remains unclear for the molecular mechanism underlying Suc metabolism in underground oil-rich storage tissues. In the present study, a comprehensive transcriptome analysis of C. esculentus oil tuber compared to other plant oil- or carbohydrate-rich storage tissues was made for the expression patterns of genes related to the Suc metabolism. RESULTS: The results revealed some species-specific features of gene transcripts in oil tuber of C. esculentus, indicating that: (i) the expressions of genes responsible for Suc metabolism are developmentally regulated and displayed a pattern dissimilar to other plant storage tissues; (ii) both of Suc breakdown and biosynthesis processes might be the major pathways associated with Suc metabolism; (iii) it was probably that Suc degradation could be primarily through the action of Suc synthase (SUS) other than invertase (INV) during tuber development. The orthologs of SUS1, SUS3 and SUS4 are the main SUS isoforms catalyzing Suc breakdown while the vacuolar INV (VIN) is the leading determinant controlling sugar composition; (iv) cytosolic hexose phosphorylation possibly relies more on fructose as substrate and uridine diphosphate glucose pyrophosphorylase (UGP) plays an important role in this pathway; (v) it is Suc-phosphate synthase (SPS) B- and C-family members rather than SPS A that are the principal contributors to SPS enzymes and play crucial roles in Suc biosynthesis pathway. CONCLUSIONS: We have successfully identified the Suc metabolic pathways in C. esculentus tubers, highlighting several conserved and distinct expressions that might contribute to sugar accumulation in this unique underground storage tissue. The specific and differential expression genes revealed in this study might indicate the special molecular mechanism and transcriptional regulation of Suc metabolism occurred in oil tubers of C. esculentus.


Subject(s)
Cyperus/metabolism , Plant Oils/metabolism , Plant Tubers/metabolism , Sucrose/metabolism , Gene Expression Profiling , Metabolic Networks and Pathways , Transcriptome
13.
Plant Cell Physiol ; 57(12): 2519-2540, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27742886

ABSTRACT

Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production.


Subject(s)
Cyperus/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism , Plant Oils/metabolism , Plant Tubers/metabolism , Triglycerides/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Cyperus/genetics , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Fruit/genetics , Fruit/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Organ Specificity , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant Sci ; 205-206: 13-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23498858

ABSTRACT

Rapid turnover of stored triacylglycerol occurs after seed germination, releasing fatty acids that provide carbon and energy for seedling establishment. Glycerolipid and fatty acid turnover that occurs at other times in the plant life cycle, including senescence is less studied. Although the entire pathway of ß-oxidation is induced during senescence, Arabidopsis leaf fatty acids turnover at rates 50 fold lower than in seedlings. Major unknowns in lipid turnover include the identity of lipases responsible for degradation of the wide diversity of galactolipid, phospholipid, and other lipid class structures. Also unknown is the relative flux of the acetyl-CoA product of ß-oxidation into alternative metabolic pathways. We present an overview of senescence-related glycerolipid turnover and discuss its function(s) and speculate about how it might be controlled to increase the energy density and nutritional content of crops. To better understand regulation of lipid turnover, we developed a database that compiles and plots transcript expression of lipid-related genes during natural leaf senescence of Arabidopsis. The database allowed identification of coordinated patterns of down-regulation of lipid biosynthesis genes and the contrasting groups of genes that increase, including 68 putative lipases.


Subject(s)
Gene Expression Regulation, Plant , Lipid Metabolism , Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Databases, Genetic , Down-Regulation , Lipase/genetics , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Physiological Phenomena , Plants/genetics , Seedlings/genetics , Seedlings/metabolism , Time Factors , Triglycerides/metabolism , Up-Regulation
15.
Plant Physiol ; 158(2): 601-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22128138

ABSTRACT

Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.


Subject(s)
Arabidopsis/cytology , Lipid Metabolism , Models, Biological , Plastids , Arabidopsis/metabolism , Biological Transport , Carbon Radioisotopes , Cell Culture Techniques , Kinetics
16.
Plant Sci ; 181(6): 660-6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21958708

ABSTRACT

Jatrpha curcas L., a non-model woody plant belonging to Euphorbiaceae family, is a promising economic plant due to the high oil content in seed and high tolerance to drought and salt stress. The embryo and endosperm of J. curcas seed differ in morphology, function and ploidy. To characterize the protein profiles of these two tissues, we have performed proteomic analysis with the dry mature J. curcas seeds. The data showed that the 2-DE profiles of endosperm and embryo were similar to each other. There are 66 differential proteins between the two seed tissues, in which 28 proteins distributed in 9 distinct functional classes, have been identified successfully in endosperm or embryo. The major groups of differential proteins are associated with metabolism (25%) and disease/defence (18%). Our results demonstrated that in the dry mature J. curcas seeds, the proteins involved in oil mobilization, signal transduction, transcription, protein synthesis, and cell cycle which are essential for the seed germination have occurred in endosperm and embryo, reflecting the fact that proteins required for germination are already present in the dry mature seed.


Subject(s)
Endosperm/metabolism , Jatropha/metabolism , Plant Proteins/metabolism , Proteome , Biofuels , Germination
17.
Plant Physiol ; 150(4): 1981-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19561121

ABSTRACT

During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 mug per leaf (0.6 mug mg(-1) dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of beta-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in beta-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Fatty Acids/metabolism , Mutation/genetics , Poaceae/growth & development , Poaceae/metabolism , Biomass , Chlorophyll/metabolism , Chromatography, Thin Layer , Oxidation-Reduction , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Time Factors
18.
Plant Physiol ; 141(4): 1274-83, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16815953

ABSTRACT

Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis.


Subject(s)
Anabaena/enzymology , Bacterial Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Photosynthesis/physiology , Amino Acid Sequence , Anabaena/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Lipid Metabolism , Molecular Sequence Data , Mutation , Phenotype , Phosphatidylglycerols/biosynthesis , Phosphatidylglycerols/deficiency , Phosphoric Monoester Hydrolases/metabolism , Photosystem II Protein Complex/metabolism , Pigments, Biological/metabolism , Sequence Alignment
19.
Biol Chem ; 387(1): 23-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16497161

ABSTRACT

It has been shown that a large number of water molecules coordinate with the pigments and subunits of photosystem I (PSI); however, the function of these water molecules remains to be clarified. In this study, the photosynthetic properties of PSI from spinach were investigated using different spectroscopic and activity measurements under conditions of decreasing water content caused by increasing concentrations of glycerol. The results show that glycerol addition caused pronounced changes in the photochemical activity of PSI particles. At low concentrations (<60%, v/v), glycerol stimulated the rate of oxygen uptake in PSI particles, while higher concentrations of glycerol cause inhibition of PSI activity. The capacity of P700 photooxidation also increased with glycerol concentrations lower than 60%. In contrast, this capacity decreased at higher glycerol concentrations. On the other hand, glycerol addition considerably affected the distribution of the bulk and red antenna chlorophyll (Chl) forms or states, with the population of red-shifted Chl forms augmented with increasing glycerol. In addition, glycerol-treated PSI particles showed a blue shift of the tryptophan fluorescence emission maximum and an increase in their capacity to bind the hydrophobic probe 1-anilino-8-naphthalene sulfonate, indicating a more non-polar environment for tryptophan residues and increased exposure of hydrophobic surfaces.


Subject(s)
Glycerol/chemistry , Photosynthesis/physiology , Photosystem I Protein Complex/chemistry , Protein Conformation , Chlorophyll/chemistry , Fluorescence , Oxidation-Reduction , Oxygen/chemistry , Photochemistry , Spinacia oleracea/chemistry , Tryptophan/chemistry , Water/chemistry
20.
Chem Phys Lipids ; 136(1): 73-82, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15936008

ABSTRACT

The interaction of divalent cations with biomembranes is important for a number of biological processes. In this study, the regulatory effect of Ca2+ on the interaction between plant spinach photosystem I (PSI) particles and negatively charged lipid phosphatidylglycerol (PG) was investigated by circular dichroism (CD) spectroscopy. It was found that in the absence of CaCl2, PG causes an increase in alpha-helix and a decrease in disordered conformations of protein secondary structures of PSI, the beta-sheet and turns being almost unaffected. Meanwhile, the same effect also enhances the excitonic interactions relating to Chl a and Chl b from the PSI core complex and external antenna light-harvesting complex (LHCI). By contrast, in the presence of CaCl2, PG hardly interferes with the structure of the proteins' skeleton of PSI, but it can depress the excitonic interactions for Chl b of LHCI and for PSI core complex Chl a at (-) 433.5 nm of the CD signal which is accompanied by a blue shift of its peak. It is most likely that the neutralization of the phosphate groups in the PSI-PG complex and the negative surface charges of PSI, and partial dehydration in the vicinity of the ester CO region of the PG polar head group by the Ca-ions modify the interaction between PSI and PG, thereby inducing molecular reorganization of protein and pigments within both the external antenna LHCI and PSI core complex in proteoliposomes.


Subject(s)
Calcium Chloride/pharmacology , Liposomes/chemistry , Phosphatidylglycerols/chemistry , Photosystem I Protein Complex/drug effects , Circular Dichroism , Protein Structure, Secondary/drug effects , Spectrophotometry , Spinacia oleracea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...